The correct option is
A 22(¯¯¯aׯ¯b)+¯¯c=¯¯bׯ¯c−(1)
Doing dot product of L.H.S.& R.H.S. with ¯¯c
⇒2(¯¯¯aׯ¯b).¯¯c+¯¯c.¯¯c=(¯¯bׯ¯c).¯¯c
⇒2(¯¯¯aׯ¯b).¯¯c+|¯¯c|2=0
⇒2(¯¯¯aׯ¯b).¯¯c=−|¯¯c|2
⇒|(¯¯¯aׯ¯b).¯¯c|=|¯¯c|22−(2)
Note : |(¯¯¯aׯ¯c).¯¯b|=|(¯¯¯aׯ¯b).¯¯c|=|(¯¯bׯ¯c).¯¯¯a|
(1)→2(¯¯¯aׯ¯b)+¯¯c=¯¯bׯ¯c
Doing dot product of both side with ¯¯¯a
⇒2(¯¯¯aׯ¯b).¯¯¯a+¯¯c.¯¯¯a=(¯¯bׯ¯c).¯¯¯a
⇒0+¯¯c.¯¯¯a=(¯¯bׯ¯c).¯¯¯a
|¯¯¯a.(¯¯bׯ¯c)|=|¯¯c.¯¯¯a|−(3)
Comparing (2) & (3)
⇒|¯¯c|22=|¯¯c.¯¯¯a|
⇒|¯¯c|22=|¯¯c|.|¯¯¯a|cosθ
(∵|(¯¯¯aׯ¯b).¯¯c|=|¯¯c|22, ∴ Maximum value of |(¯¯¯aׯ¯b).¯¯c| is attained when ¯¯c is maximum),
and for |¯¯c| to be maximum,
cosθ=1
⇒θ=0
∴|¯¯c|=2|¯¯¯a|
∴|¯¯c|=2
(∵|¯¯¯a|=|¯¯b|=1)
Putting in (2)
⇒|(¯¯¯aׯ¯b).¯¯c|=|(¯¯¯aׯ¯c).¯¯b|=|¯¯c|22=42
=2
∴ B) answer