wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If ¯a, ¯b and ¯c are unit coplanar vector than the scalar triple product [2¯a¯b 2¯b¯c 2¯c¯a] is equal to

A
0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is D 0
^a,^b^c are coplaner vectors
So, ^a(^b×^c)=^a^b.(^c×^a)=0
^c(^a×^b)=0
Now,
(2^a^b)[(2^b^c)×(2^c^a)]=(2^a^b)[2^b×(2^c^a)^c×(2^c^a)]=(2^a^b)[4^b×^c2^b×^a^c×2^c+^c×^a]=(2^a^b)[4^b×^c+2^a×^b+^c×^a]=^a(^b×^c)^b(4^b×^c)+2^a(^a×^b)2^b(^a×^b)+2^a(^c×^a)^b(^c×^a)=8^a(^b×^c)0+00+0^b(^c×^a)=8^a(^b×^c)^a(^b×^c)=7^a(^b×^c)=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Linear Combination of Vectors
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon