if ¯a,¯b,¯c are unit vectors such that ¯a.¯b=¯a.¯c=0and(¯b,¯c)=π3 then the value of∣∣¯aׯb−¯aׯc∣∣ is
0
2
1
¯a.¯b=¯a.¯c⇒¯a(¯b−¯c)=0⇒¯a⊥¯b−¯c∣∣¯aׯb−¯aׯc∣∣=∣∣¯a×(¯b−¯c)∣∣=|¯a|∣∣¯b−¯c∣∣sinπ2=∣∣¯b−¯c∣∣∣∣¯b−¯c∣∣2=|¯b|2+|¯c|2−2|¯b||¯c|cosπ3=1
If a, b, c are unit vectors such that a + b + c = 0, then find the value of a.b + b.c + c.a