If ¯a, ¯b, ¯c be three non-coplanar vectors and ¯a1, ¯b1, ¯c1 constitute the corresponding reciprocal system of vectors, then for any arbitrary vector ¯r.
A
¯r=(¯r.¯a1)¯a1+(¯r.¯b1)¯b1+(¯r.¯c1)¯c1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
¯r=(¯r.¯a)¯a+(¯r.¯b)¯b+(¯r.¯c)¯c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
¯r=(¯r.¯a1)¯a+(¯r.¯b1)¯b+(¯r.¯c1)¯c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C¯r=(¯r.¯a1)¯a+(¯r.¯b1)¯b+(¯r.¯c1)¯c Let ¯r=λ¯a+μ¯b+δ¯c ∴¯r.¯a1=λ, ¯r.¯b1=μ, ¯r.¯c1=δ ..(According to the definition of reciprocal system of vectors) ∴¯r=(¯r.¯a1)¯a+(¯r.¯b1)¯b+(¯r.¯c1)¯c