If ¯r satisfies the equation ¯r×(^i+2^j+^k)=^i−^k, then for any scalar t, ¯r is equal to
A
^i+t(^i+2^j+^k)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
^j+t(^i+2^j+^k)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
^k+t(^i+2^j+^k)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is D^j+t(^i+2^j+^k) Given ¯r satisfies the equation ¯r×(^i+2^j+^k)=^i−^k, let ¯r=a^i+b^j+^k ⇒¯r×(^i+2^j+^k)=(b−2c)^i−(a−c)^j+(2a−b)^k=^i−^k ⇒b−2c=1;a=c and 2a−b=−1 let a=t ⇒¯r=t^i+(1+2t)^j+t^k ∴¯r=^j+t(^i+2^j+^k) Hence, option B.