Given equations can be rewritten as
bc+qr+1=0 ......... (i)
ca+rp+1=0 .......... (ii)
ab+pq+1=0 .......... (iii)
Multiplying (i), (ii) and (iii) by ap, bq, cr respectively, we get
(abc)p+(pqr)a+ap=0
(abc)q+(pqr)b+bq=0
(abc)r+(pqr)c+cr=0
These equations are consistent .( Equations are three but variables abc & pqr two).
Hence ∣∣
∣∣paapqbbqrccr∣∣
∣∣=0
⇒∣∣
∣∣pqrabcapbqcr∣∣
∣∣=0 {Interchanging Rows into columns}
⇒(−1)∣∣
∣∣apbqcrabcpqr∣∣
∣∣=0 (R1↔R3)
⇒ Hence ∣∣
∣∣apbqcrabcpqr∣∣
∣∣=0