wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If bcx = cay = abz then show that ax+bya2+b2=by+czb2+c2=cz+axc2+a2.

Open in App
Solution

Let:bcx=cay=abz=kx=kbc, y =kca, z=kab ...(i)ax+bya2+b2=a×kbc+b×kcaa2+b2 Substituting the values of x and y=kabc+bcaa2+b2=ka2c+b2cbc2aa2+b2=kca2+b2abc2a2+b2=kabcax+bya2+b2 =kabc ...(ii) Also,by+czb2+c2=b×kca+c×kabb2+c2=k×bca+cabb2+c2=kab2+c2aca2bb2+c2=kab2+c2bca2b2+c2=kabcby+czb2+c2=kabc ...(iii)And,cz+axc2+a2=c×kab+a×kbcc2+a2=kcab+ abcc2+a2=kbc2+a2bab2cc2+a2=kbc2+a2ab2cc2+a2=kabccz+axc2+a2=kabc ...(iv)From (ii), (iii) and (iv), we get:ax+bya2+b2 =by+czb2+c2=cz+axc2+a2

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon