A2=[1−12−1][1−12−1]=[−100−1]
B2=[a1b−1][a1b−1]=[a2+ba−1ab−bb+1]
A2+B2=[−100−1]+[a2+ba−1ab−bb+1]=[a2+b−1a−1ab−bb]
A+B=[1−12−1]+[a1b−1]=[a+10b+2−2]
(A+B)2=[a+10b+2−2]+[a+10b+2−2]
=[(a+1)20ab+2a−b−24]
Given (A+B)2=A2+B2
⇒[(a+1)20ab+2a−b−24]
⇒[(a2+b+1)a−1ab−bb]
⇒a=1 and b=4