The correct option is A 0
Given, [1−tanθtanθ1][1−tanθtanθ1]−1=[cosa−sinasinacosa]−1
Let A=[1−tanθtanθ1],B=[cosa−sinasinacosa]
So, AA−1=B−1
⇒I=B−1
Here, |B|=1
adjB=CT=[cosa−sinasinacosa]T
⇒adjB=[cosasina−sinacosa]
Hence, B−1=[cosasina−sinacosa]
⇒[1001]=[cosasina−sinacosa]
⇒cosa=1,sina=0
⇒a=0