The correct option is B a=cos2θ,b=sin2θ
[1−tanθtanθ1][1tanθ−tanθ1]−1=[a−bba] .....(1)
Let A=[1tanθ−tanθ1]
|A|=1+tan2θ
adjA=CT=[1tanθ−tanθ1]T
⇒adjA=[1−tanθtanθ1]
A−1=adjA|A|
A−1=11+tan2θ[1−tanθtanθ1]
Substitute this value in (1), we get
11+tan2θ[1−tanθtanθ1][1−tanθtanθ1]=[a−bba]
=11+tan2θ[1−tan2θ−2tanθ2tanθ1−tan2θ]=[a−bba]
=⎡⎢
⎢⎣1−tan2θ1+tan2θ−2tanθ1+tan2θ2tanθ1+tan2θ1−tan2θ1+tan2θ⎤⎥
⎥⎦=[a−bba]
[cos2θ−sin2θsin2θcos2θ]=[a−bba]
⇒a=cos2θ,b=sin2θ