If [140x14]=[20−a2]−2, then the value of ax is equal of
⎡⎢ ⎢ ⎢⎣140x14⎤⎥ ⎥ ⎥⎦=[20−α2]−2
Multiplying by matrix →[20−α2]=A
[20−α2]⎡⎢ ⎢ ⎢⎣140x14⎤⎥ ⎥ ⎥⎦=[20−α2]−1⇒⎡⎢ ⎢ ⎢⎣120(−α4−2x)12⎤⎥ ⎥ ⎥⎦=[20−α2]−1
Again multiplying by −A
⇒[20−α2]⎡⎢ ⎢ ⎢⎣120(−α4−2x)12⎤⎥ ⎥ ⎥⎦=[1001]⇒⎡⎣10−α2+−α4−4x1⎤⎦=[1001]
On comparing
−α−4x=0−α=−4xαx=4