The correct option is
A [−1−141]Let the matrix A,b and C are as
A=(abcd),B=(wxyz) and C=(mnop)
As given
(λ2−2λ+1λ−21−λ2+4λ1−λ2)=λ2(abcd)+λ(wxyz)+(mnop)
(λ2−2λ+1λ−21−λ2+4λ1−λ2)=(aλ2+wλ+mbλ2+xλ+pcλ2+yλ+odλ2+zλ+p)
On comparing both sides we get
a=1,b=0,c=−1,d=−1,w=−2,x=1,y=3,z=0,m=1,n=−2,o=1,p=1
B+C=(wxyz)+(mnop)=(−2130)+(1−211)=(−1−141)