wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If ∣ ∣111abca3b3c3∣ ∣=(ab)(bc)(ca)(a+b+c),
where a,b,c are all different real no., then the determinant
∣ ∣ ∣111(xa)2(xb)2(xc)2(xb)(xc)(xc)(xa)(xa)(xb)∣ ∣ ∣
vanishes when

Open in App
Solution

We have
∣ ∣111abca3b3c3∣ ∣=(ab)(bc)(ca)(a+b+c)
Taking a,b,c from C1,C2,C3 respectively
abc∣ ∣ ∣ ∣1a1b1c111a2b2c2∣ ∣ ∣ ∣
∣ ∣ ∣bcacab111a2b2c2∣ ∣ ∣∣ ∣111bcacaba2b2c2∣ ∣∣ ∣111a2b2c2bcacab∣ ∣=(ab)(bc)(ca)(a+b+c)
From given determinant, we can write the value of required determinant by replacing
a(xa), b(xb), c(xc)
Then
D=∣ ∣ ∣111(xa)2(xb)2(xc)2(xb)(xc)(xc)(xa)(xa)(xb)∣ ∣ ∣=(ab)(bc)(ca)(a+b+c3x)
it vanishes when 3x=a+b+c or a=b or b=c or c=a

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon