If ∣∣
∣∣111abca3b3c3∣∣
∣∣=(a−b)(b−c)(c−a)(a+b+c),
where a,b,c are all different real no., then the determinant ∣∣
∣
∣∣111(x−a)2(x−b)2(x−c)2(x−b)(x−c)(x−c)(x−a)(x−a)(x−b)∣∣
∣
∣∣
vanishes when
Open in App
Solution
We have ∣∣
∣∣111abca3b3c3∣∣
∣∣=(a−b)(b−c)(c−a)(a+b+c)
Taking a,b,c from C1,C2,C3 respectively ⇒abc∣∣
∣
∣
∣∣1a1b1c111a2b2c2∣∣
∣
∣
∣∣
⇒∣∣
∣
∣∣bcacab111a2b2c2∣∣
∣
∣∣⇒−∣∣
∣∣111bcacaba2b2c2∣∣
∣∣⇒∣∣
∣∣111a2b2c2bcacab∣∣
∣∣=(a−b)(b−c)(c−a)(a+b+c)
From given determinant, we can write the value of required determinant by replacing a→(x−a),b→(x−b),c→(x−c)
Then D=∣∣
∣
∣∣111(x−a)2(x−b)2(x−c)2(x−b)(x−c)(x−c)(x−a)(x−a)(x−b)∣∣
∣
∣∣=(a−b)(b−c)(c−a)(a+b+c−3x)
it vanishes when 3x=a+b+c or a=b or b=c or c=a