Given:
f(x)=∣∣
∣
∣∣(1+x)17(1+x)19(1+x)23(1+x)23(1+x)29(1+x)34(1+x)41(1+x)43(1+x)47∣∣
∣
∣∣
Taking (1+x)17,(1+x)23 and (1+x)41 common from R1,R2 and R3 respectively.
⇒f(x)=(1+x)17(1+x)23(1+x)41
∣∣
∣
∣∣1(1+x)2(1+x)61(1+x)6(1+x)111(1+x)2(1+x)6∣∣
∣
∣∣
If any two rows or columns are identical then value of determinant is zero. Here, R1 and R3 are identical.
⇒f(x)=0
∴A+Bx+Cx2+…=0
(∵f(x)=A+Bx+Cx2+…)
By comparing the like terms, we get A=0
Hence, the value of 𝐴 is 0.