wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If f(x)=∣ ∣ ∣(1+x)17(1+x)19(1+x)23(1+x)23(1+x)29(1+x)34(1+x)41(1+x)43(1+x)47∣ ∣ ∣=A+Bx+Cx2+ then A=

Open in App
Solution

Given:

f(x)=∣ ∣ ∣(1+x)17(1+x)19(1+x)23(1+x)23(1+x)29(1+x)34(1+x)41(1+x)43(1+x)47∣ ∣ ∣

Taking (1+x)17,(1+x)23 and (1+x)41 common from R1,R2 and R3 respectively.

f(x)=(1+x)17(1+x)23(1+x)41

∣ ∣ ∣1(1+x)2(1+x)61(1+x)6(1+x)111(1+x)2(1+x)6∣ ∣ ∣

If any two rows or columns are identical then value of determinant is zero. Here, R1 and R3 are identical.

f(x)=0

A+Bx+Cx2+=0

(f(x)=A+Bx+Cx2+)

By comparing the like terms, we get A=0

Hence, the value of 𝐴 is 0.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon