If ∣∣ ∣ ∣∣1+sin2θcos2θ4sin4θsin2θ1+cos2θ4sin4θsin2θcos2θ1+4sin4θ∣∣ ∣ ∣∣=0 such that 0≤θ≤π2 then θ is
Operating R1−R3,R2−R3 and then C3→C3+C1 we get
∣∣ ∣∣10001−1sin2θcos2θ1+sin2θ+4sin4θ∣∣ ∣∣=0
On Expanding we get
1+sin2θ+4sin4θ+cos2θ=1
⇒ 2 + 4sin4θ=0⇒sin4θ=−12=sin(−π6)
⇒ 4θ=nπ+(−1)n(−π6) θ=nπ4−(−1)n(π24)
For 0≤θ≤π2 we have θ=7π24,11π24