If ∣∣ ∣∣4−x4+x4+x4+x4−x4+x4+x4+x4−x∣∣ ∣∣=0, then find the value of x.
Given, ∣∣
∣∣4−x4+x4+x4+x4−x4+x4+x4+x4−x∣∣
∣∣=0
⇒∣∣
∣∣12+x12+x12+x4+x4−x4+x4+x4+x4−x∣∣
∣∣=0 [∵R1→R1+R2+R3]
⇒(12+x)∣∣
∣∣1114+x4−x4+x4+x4+x4−x∣∣
∣∣=0 [taking (12+x) common from R1]
⇒(12+x)∣∣
∣∣0010−2x4+x2x2x4−x∣∣
∣∣=0 [∵C1→C1−C3 and C2→C2−C3]
⇒(12+x)[1(−(−4x2))]=0⇒(12+x)(4x2)=0∴x=−12,0