If ∣∣ ∣ ∣∣(a−1)2a2(a+1)2(b−1)2b2(b+1)2(c−1)2c2(c+1)2∣∣ ∣ ∣∣=k∣∣ ∣ ∣∣1aa21bb21cc2∣∣ ∣ ∣∣, then the value of k is
If
Δ1, ∣∣ ∣∣111abca2b2c2∣∣ ∣∣, Δ2 = ∣∣ ∣∣1bca1cab1abc∣∣ ∣∣ then
∣∣ ∣ ∣∣a2+1abacabb2+1bccacbc2+1∣∣ ∣ ∣∣=1+a2+b2+c2