wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If ∣ ∣ ∣a2+λ2ab+cλcabλabcλb2+λ2bc+aλca+bλbcaλc2+λ2∣ ∣ ∣∣ ∣λcbcλabaλ∣ ∣=(1+a2+b2+c2)3, then the value of λ is

A
8
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
27
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
-1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 1
Let D=∣ ∣λcbcλabaλ∣ ∣

determinant of cofactors is

Dc=∣ ∣ ∣a2+λ2ab+cλcabλabcλb2+λ2bc+aλca+bλbcaλc2+λ2∣ ∣ ∣=D2

∣ ∣ ∣a2+λ2ab+cλcabλabcλb2+λ2bc+aλca+bλbcaλc2+λ2∣ ∣ ∣∣ ∣λcbcλabaλ∣ ∣=(1+a2+b2+c2)3

D3=(1+a2+b2+c2)3 -------(1)
Now,
D=∣ ∣λcbcλabaλ∣ ∣

=λ(λ2+a2)c(λcab)b(acbλ)
=λ(λ2+a2+b2+c2)
from (1)
(λ(λ2+a2+b2+c2))3=(1+a2+b2+c2)3
comparing on both sides gives
λ3=1 and λ2=1
λ=1
Hence, option C.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Adjoint and Inverse of a Matrix
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon