The correct option is C 4
Given, ∣∣
∣
∣∣b2+c2abacabc2+a2bccacba2+b2∣∣
∣
∣∣=ka2b2c2
∣∣
∣
∣∣b2+c2abacabc2+a2bccacba2+b2∣∣
∣
∣∣
Multiplying R1,R2,R3 by a,b,c respectively
=1abc∣∣
∣
∣∣a(b2+c2)a2ba2cab2b(c2+a2)b2cc2ac2bc(a2+b2)∣∣
∣
∣∣
Taking a,b,c common from C1,C2,C3 respectively
=∣∣
∣
∣∣(b2+c2)a2a2b2(c2+a2)b2c2c2(a2+b2)∣∣
∣
∣∣
R1→R1+R2+R3
=∣∣
∣
∣∣2(b2+c2)2(c2+a2)2(a2+b2)b2(c2+a2)b2c2c2(a2+b2)∣∣
∣
∣∣
=2∣∣
∣
∣∣(b2+c2)(c2+a2)(a2+b2)b2(c2+a2)b2c2c2(a2+b2)∣∣
∣
∣∣
R2→R2−R1,R3→R3−R1
=2∣∣
∣
∣∣(b2+c2)(c2+a2)(a2+b2)−c20−a2−b2−a20∣∣
∣
∣∣
=2[a2b2c2+a2b2c2]=4a2b2c2
Hence, k=4