The correct option is B 2
Given, ∣∣
∣∣b+cc+aa+ba+bb+cc+ac+aa+bb+c∣∣
∣∣=k∣∣
∣∣abccabbca∣∣
∣∣
LHS=∣∣
∣∣b+cc+aa+ba+bb+cc+ac+aa+bb+c∣∣
∣∣
C1→C1+C2+C3
=∣∣
∣
∣∣2(a+b+c)c+aa+b2(a+b+c)b+cc+a2(a+b+c)a+bb+c∣∣
∣
∣∣
=2(a+b+c)∣∣
∣∣1c+aa+b1b+cc+a1a+bb+c∣∣
∣∣
R1→R1−R2,R2→R2−R3
=2(a+b+c)∣∣
∣∣0a−bb−c0c−aa−b1a+bb+c∣∣
∣∣
=2(a+b+c)[a2+b2−2ab−bc+ab+c2−ac]
LHS=2(a+b+c)(a2+b2+c2−ab−bc−ac)
Now, RHS=∣∣
∣∣abccabbca∣∣
∣∣
C1→C1+C2+C3
=∣∣
∣
∣∣(a+b+c)bc(a+b+c)ab(a+b+c)ca∣∣
∣
∣∣
=(a+b+c)∣∣
∣∣1bc1ab1ca∣∣
∣∣
R1→R1−R2,R2→R2−R3
=(a+b+c)∣∣
∣
∣∣0−(a−b)−(b−c)0−(c−a)−(a−b)1ca∣∣
∣
∣∣
=(a+b+c)[a2+b2−2ab−bc+ab+c2−ac]
RHS=(a+b+c)(a2+b2+c2−ab−bc−ac)
Hence, LHS=2RHS
So, k=2