Applying R1→xR1,R2,R3→zR3 to Δ4and dividing by xyz we get
Δ=1xyz⎡⎢ ⎢⎣x(y+z)2x2yx2zxy2y(x+z)2y2zxz2yz2z(x+y)2⎤⎥ ⎥⎦
Taking common factor x,y,z from C1,C2 C3 respectively, we get
Δ=xyzxyz⎡⎢ ⎢⎣(y+z)2x2x2y2(x+z)2y2z2z2(x+y)2⎤⎥ ⎥⎦
Applying C2→C2,C−3→C3−C1 we have
Δ=⎡⎢ ⎢⎣(y+z)2x2−(y+z)2x2−(y+z)2y2(x+z)2−y20z20(x+y)2−y2⎤⎥ ⎥⎦
Taking common factor (x+y+z) from C2 and C3 we have
Δ=(x+y+z)2⎡⎢ ⎢⎣(y+z)2x−(y+z)x−(y+z)y2(x+z)−y0z20(x+y)−y⎤⎥ ⎥⎦
Applying R1→R1−(R2+R3)
we have
Δ=(x+y+z)2⎡⎢⎣2yz−2z−2yy2x−y+z0z20x+y−z⎤⎥⎦
Applying C2→C2+1yC1 and C3→C3+12C1, we get
Δ=(x+y+z)2⎡⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣2yz00y2x+zy2zz2z2yx+y⎤⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦
Finally expanding along R1, we have
Δ=(x+y+z)2(2yz)[(x+z)(x+y)−yz]=(x+y+z)2(2yz)(x2+xy+xz)=2xyz(x+y+z)3
Comparing L.H.S and R.H.S,
⇒m=3