The correct option is C 2
Dividing C1,C2,C3 by x,y,z we have
△=xyz∣∣
∣
∣
∣
∣
∣∣pxqy−1rz−1px−1qyrz−1px−1qy−1rz∣∣
∣
∣
∣
∣
∣∣=0
Applying C1→C1+C2+C3
⇒△=xyz∣∣
∣
∣
∣
∣
∣∣∑px−2qy−1rz−1∑px−2qyrz−1∑px−2qy−1rz∣∣
∣
∣
∣
∣
∣∣=0
⇒xyz(∑px−2)∣∣
∣
∣
∣
∣
∣∣1qy−1rz−11qyrz−11qy−1rz∣∣
∣
∣
∣
∣
∣∣=0
Using R1→R1−R2,R2→R2−R3 then expanding with the help of third Row (R3) we get ∑px=2
i.e. px+qy+rz=2
Hence choice (c) is correct.