The correct option is A A.P.
As given ∣∣
∣∣x+1x+2x+3x+2x+3x+4x+ax+bx+c∣∣
∣∣=0=∣∣
∣∣−1−1x+3−1−1x+4a−bb−cx+c∣∣
∣∣=0, by C1→C1−C2C2→C2−C3⇒∣∣
∣∣00−1−1−1x+4a−bb−cx+c∣∣
∣∣=0, by R1→R1−R2⇒(−1)(−b+c+a−b)=0⇒2b−a−c=0⇒a+c=2b i.e., a,b,c are in A.P.
Trick : In such type of problem, put any suitable value of x i.e. 0, so that the determinant.
∣∣
∣∣123234abc∣∣
∣∣=0
⇒ 1(3c-4b) -2(2c-4a) +3(2b-3a)=0
⇒ -c+2b-a=0 ⇒ 2b =a+c. Hence the result.