If ∣∣∣x218x∣∣∣=∣∣∣62186∣∣∣, then x is equal to a) 6 b) ±6 c) -6 d) zero
Given, ∣∣∣x218x∣∣∣=∣∣∣62186∣∣∣, On expanding both determinants, we get x×x−18×2=6×6−18×2⇒x2−36=36−36⇒ x2−36=0⇒x2=36⇒x=±6 So, (b) is the correct option.
If ∣∣∣2x58x∣∣∣=∣∣∣6−273∣∣∣, then the value of x is
(a) 3 (b) ±3 (c) ±6 (d) 6
If p=∣∣∣x11x∣∣∣ and Q=∣∣ ∣∣x111x111x∣∣ ∣∣ then dQdx=.......