The correct option is
B −91) Given ∣∣
∣∣x3634x6x3∣∣
∣∣=0
∴x∣∣∣4xx3∣∣∣−3∣∣∣3x63∣∣∣+6∣∣∣346x∣∣∣=0
∴x(12−x2)−3(9−6x)+6(3x−24)=0
∴12x−x3−27+18x+18x−144=0
∴−x3+48x−171=0
∴x3−48x+171=0 (1)
2) ∣∣
∣∣2x7x7272x∣∣
∣∣=0
∴2∣∣∣722x∣∣∣−x∣∣∣x27x∣∣∣+7∣∣∣x772∣∣∣=0
∴2(7x−4)−x(x2−14)+7(2x−49)=0
∴14x−8−x3+14x+14x−343=0
∴−x3+42x−351=0
∴x3−42x+351=0 (2)
3) ∣∣
∣∣45x5x4x45∣∣
∣∣=0
∴4∣∣∣x445∣∣∣−5∣∣∣54x5∣∣∣+x∣∣∣5xx4∣∣∣=0
∴4(5x−16)−5(25−4x)+x(20−x2)=0
∴20x−64−125+20x+20x−x3=0
∴−x3+60x−189=0
∴x3−60x+189=0 (3)
Equate equation (1) and (2), we get,
x3−48x+171=x3−42x+351
∴6x+180=0
∴6x=−180
∴x=−30
Equate equation (2) and (3), we get,
x3−42x+351=x3−60x+189
∴18x+162=0
∴18x=−162
∴x=−9
Equate equations (1) and (3), we get,
x3−48x+171=x3−60x+189
∴12x−18=0
∴x=32