The correct option is B -9
∣∣
∣∣x3636x6x3∣∣
∣∣=∣∣
∣∣2x7x7272x∣∣
∣∣=∣∣
∣∣45x5x4x45∣∣
∣∣=0
C1→C1+C2+C3
∣∣
∣∣x+936x+96xx+9x3∣∣
∣∣=∣∣
∣∣x+9x7x+972x+92x∣∣
∣∣=∣∣
∣∣x+95xx+9x4x+945∣∣
∣∣=0
(x+9)∣∣
∣∣13616x1x3∣∣
∣∣=(x+9)∣∣
∣∣1x717212x∣∣
∣∣=(x+9)∣∣
∣∣15x1x4145∣∣
∣∣=0
R1→R1−R2,R2→R2−R3
(x+9)∣∣
∣∣0−36−x06−xx−31x3∣∣
∣∣=(x+9)∣∣
∣∣0x−75052−x12x∣∣
∣∣=(x+9)∣∣
∣∣05−xx−40x−4−1145∣∣
∣∣=0
(x+9)[−3x+9−x2−36+12x]=(x+9)[−x2−14+9x−25]=(x+9)[x−5−x2−16+8x]=0
(x+9)[−x2+9x−27]=(x+9)[−x2+9x−39]=(x+9)[−x2−21+9x]=0
For all quadratics in above equation, D<0 , so roots are imaginary
Hence, x=−9