If ∣∣
∣
∣∣x+aa2a3x+bb2b3x+cc2c3∣∣
∣
∣∣=0 and a≠b≠c, then the value of x is:
A
−abcab+bc+ca
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
abc(a−b)(b−c)(c−a)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
abcab+bc+ca
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(a−b)(b−c)(c−a)abc
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A−abcab+bc+ca Given: Δ=∣∣
∣
∣∣x+aa2a3x+bb2b3x+cc2c3∣∣
∣
∣∣=0
The given determinant can be expressed as a sum of two determinants as: ∣∣
∣
∣∣xa2a3xb2b3xc2c3∣∣
∣
∣∣+∣∣
∣
∣∣aa2a3bb2b3cc2c3∣∣
∣
∣∣=0 ⇒x∣∣
∣
∣∣1a2a31b2b31c2c3∣∣
∣
∣∣+abc∣∣
∣
∣∣1aa21bb21cc2∣∣
∣
∣∣=0 ⇒x(a−b)(b−c)(c−a)(ab+bc+ca)+abc(a−b)(b−c)(c−a)=0 ⇒x=−abcab+bc+ca