wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If ∣ ∣ ∣xkxk+2xk+3ykyk+2yk+3zkzk+2zk+3∣ ∣ ∣=(xy)(yz)(zx)(1x+1y+1z) then find the value of k.

Open in App
Solution

Given ∣ ∣ ∣xkxk+2xk+3ykyk+2yk+3zkzk+2zk+3∣ ∣ ∣=(xy)(yz)(zx)(1x+1y+1z) ..... (1)
Consider, ∣ ∣ ∣xkxk+2xk+3ykyk+2yk+3zkzk+2zk+3∣ ∣ ∣
=xkykzk∣ ∣ ∣1x2x31y2y31z2z3∣ ∣ ∣
R1R1R2,R2R2R3

=xkykzk∣ ∣ ∣0(xy)(x+y)(xy)(x2+xy+y2)0(yz)(y+z)(yz)(y2+yz+z2)1z2z3∣ ∣ ∣
=(xyz)k(xy)(yz)∣ ∣ ∣0x+yx2+xy+y20y+zy2+yz+z21z2z3∣ ∣ ∣
R1R1R2
=(xyz)k(xy)(yz)∣ ∣ ∣0xz(xz)(x+y+z)0y+zy2+yz+z21z2z3∣ ∣ ∣

=(xyz)k(xy)(yz)(zx)∣ ∣ ∣01(x+y+z)0y+zy2+yz+z21z2z3∣ ∣ ∣
=(xyz)k(xy)(yz)(zx)(xy+yz+xz)
=(xyz)k+1(xy)(yz)(zx)(1x+1y+1z)
So, on comparing with (1), we get
k+1=0
k=1

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Adjoint and Inverse of a Matrix
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon