wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If ∣∣ ∣ ∣∣yz−x2zx−y2xy−z2xz−y2xy−z2yz−x2xy−z2yz−x2zx−y2∣∣ ∣ ∣∣=∣∣ ∣ ∣∣r2u2u2u2r2u2u2u2r2∣∣ ∣ ∣∣, then

A
r2=x+y+z
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
r2=x2+y2+z2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
u2=yz+zx+xy
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
u2=xyz
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct options are
B r2=x2+y2+z2
D u2=yz+zx+xy
Given,∣ ∣ ∣yzx2zxy2xyz2xzy2xyz2yzx2xyz2yzx2zxy2∣ ∣ ∣=∣ ∣ ∣r2u2u2u2r2u2u2u2r2∣ ∣ ∣
RHS=∣ ∣ ∣r2u2u2u2r2u2u2u2r2∣ ∣ ∣
R1R1R2,R2R2R3
=∣ ∣ ∣r2u2(r2u2)00r2u2(r2u2)u2u2r2∣ ∣ ∣
=(r2u2)2∣ ∣110011u2u2r2∣ ∣
RHS=(r2u2)2(r2+2u2)
Now, LHS=∣ ∣ ∣yzx2zxy2xyz2xzy2xyz2yzx2xyz2yzx2zxy2∣ ∣ ∣
C1C1+C2+C3
=(xy+yz+xzx2y2z2)∣ ∣ ∣1zxy2xyz21xyz2yzx21yzx2zxy2∣ ∣ ∣
R1R1R2,R2R2R3
=(xy+yz+xzx2y2z2)∣ ∣ ∣0(zy)(x+y+z)(xz)(x+y+z)0(xz)(x+y+z)(yx)(x+y+z)1yzx2zxy2∣ ∣ ∣
LHS=(xy+yz+xzx2y2z2)2(x+y+z)2
So, on comparing r2u2=xy+yz+xzx2y2z2 ....(i)
and r2+2u2=(x+y+z)2 .....(ii)
Subtracting (i) from (ii), we get
u2=xy+yz+zx
Also, r2=x2+y2+z2
Hence, options 'B' and 'C' are correct.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon