The correct options are
B r2=x2+y2+z2
D u2=yz+zx+xy
Given,∣∣
∣
∣∣yz−x2zx−y2xy−z2xz−y2xy−z2yz−x2xy−z2yz−x2zx−y2∣∣
∣
∣∣=∣∣
∣
∣∣r2u2u2u2r2u2u2u2r2∣∣
∣
∣∣
RHS=∣∣
∣
∣∣r2u2u2u2r2u2u2u2r2∣∣
∣
∣∣
R1→R1−R2,R2→R2−R3
=∣∣
∣
∣∣r2−u2−(r2−u2)00r2−u2−(r2−u2)u2u2r2∣∣
∣
∣∣
=(r2−u2)2∣∣
∣∣1−1001−1u2u2r2∣∣
∣∣
⇒RHS=(r2−u2)2(r2+2u2)
Now, LHS=∣∣
∣
∣∣yz−x2zx−y2xy−z2xz−y2xy−z2yz−x2xy−z2yz−x2zx−y2∣∣
∣
∣∣
C1→C1+C2+C3
=(xy+yz+xz−x2−y2−z2)∣∣
∣
∣∣1zx−y2xy−z21xy−z2yz−x21yz−x2zx−y2∣∣
∣
∣∣
R1→R1−R2,R2→R2−R3
=(xy+yz+xz−x2−y2−z2)∣∣
∣
∣∣0(z−y)(x+y+z)(x−z)(x+y+z)0(x−z)(x+y+z)(y−x)(x+y+z)1yz−x2zx−y2∣∣
∣
∣∣
LHS=(xy+yz+xz−x2−y2−z2)2(x+y+z)2
So, on comparing r2−u2=xy+yz+xz−x2−y2−z2 ....(i)
and r2+2u2=(x+y+z)2 .....(ii)
Subtracting (i) from (ii), we get
⇒u2=xy+yz+zx
Also, r2=x2+y2+z2
Hence, options 'B' and 'C' are correct.