Transpose the last term and then square and add
1 + 1 +2 cos (α+β−α) = 1
∴cosβ=−12∴β=2π3
Again 2 cos (α+β2)cosβ2=−cos(α+β+γ)
2 sin (α+β2)cosβ2=−sin(α+β+γ)
∴tan(α+β2)=tan(α+β+γ)
∴α+β+γ=α+β2=π(α+β2)
The first gives as γ=−β2=−π3 rejected as γ is +ive
From 2nd, γ=π −β2=π−π3=2π3