If β is one of the angles between the normals to the ellipse, x2+3y2=9 at the points (3cosθ,√3sinθ) and (−3sinθ,√3cosθ); θ∈(0,π2); then 2cotβsin2θ is equal to
A
2√3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
1√3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
√2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
√34
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A2√3 x2+3y2=9 equation of the normal at (3cosθ,√3sinθ) and (−3sinθ,√3cosθ) will be 3xcosθ−√3ysinθ=6 and 3x−sinθ−√3ycosθ=6 Let m1,m2 be their slopes, then
m1=√3tanθ,m2=−√3cotθ So, tanβ=∣∣∣m1−m21+m1m2∣∣∣⇒tanβ=∣∣∣√3tanθ+√3cotθ1−√3tanθ√3cotθ∣∣∣⇒tanβ=√32|sinθcosθ|⇒tanβ=√3sin2θ⇒1cotβ=√3sin2θ⇒cotβsin2θ=1√3 ∴2cotβsin2θ=2√3