If β is one of the angles between the normals to the ellipse, x2+3y2=9 at the points (3cosθ,√3sinθ) and (−3sinθ,√3cosθ); θ∈(0,π2); then 2cotβsin2θ is equal to :
A
2√3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
1√3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
√2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
√34
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A2√3 x2+3y2=9
Differentiating w.r.t. x, 2x+6yy′=0⇒y′=−x3y
Slope of the normal, m=3yx
Slope of the normal at (3cosθ,√3sinθ) m1=3√3sinθ3cosθ=√3tanθ
Slope of the normal at (−3sinθ,√3cosθ) m2=3√3cosθ−3sinθ=−√3cotθ
So, tanβ=∣∣∣m1−m21+m1m2∣∣∣⇒tanβ=∣∣∣√3tanθ+√3cotθ1−√3tanθ√3cotθ∣∣∣⇒tanβ=√32|sinθcosθ|⇒tanβ=√3sin2θ⇒1cotβ=√3sin2θ⇒cotβsin2θ=1√3 ∴2cotβsin2θ=2√3