Let the quantities be a and b. Then, a,A1,A2,b are in a.p. Thus, we can write
A1−a=b−A2 or A1+A2=a+b⟶(I)
If a,G1,G2 are in G.P.Then we can write
G1a=bG2 or G1G2=ab⟶(II)
If a,H1,H2,b are in HP. Then 1a,1H1,1H2,1b will be in A.P.
∴1H1−1a=1b−1H2 or,
1H1+1H2=1a+1b=a+bab
From (I) and (II),
1H1+1H2=A1+A2G1G2
⟹H1+H2H1H2=A1+A2G1G2
⟹G1G2H1H2=A1+A2H1+H2
∴G1G2:H1H2=(A1+A2):(H1+H2)
Hence proved