(a)
Rationalizing the LHS of 3+√73−√7=a+b√7.
3+√73−√7×3+√73+√7=a+b√7
(3+√7)2(3)2−(√7)2=a+b√7
9+7+6√79−7=a+b√7
16+6√72=a+b√7
8+3√7=a+b√7
By comparing both sides,
a=8,b=3
(b)
Rationalizing the LHS of 5+√37−4√3=47a+b√3.
5+√37−4√3=47a+b√3
5+√37−4√3×7+4√37+4√3=47a+b√3
(5+√3)(7+4√3)(7)2−(4√3)2=47a+b√3
35+20√3+7√3+1249−48=47a+b√3
47+27√3=47a+b√3
By comparing both sides,
a=1,b=27