If both limx→af(x) and limx→ag(x) and exist finitely and limx→ag(x)=0, then
limx→af(x)g(x)=limx→af(x)limx→ag(x)
False
The given result is true for all the cases except when limx→ag(x) is zero.
So the result
limx→af(x)g(x)=limx→af(x)limx→ag(x)
is applicable only when limx→af(x) and limx→ag(x) exist finitely, and limx→ag(x)≠0.
Thus the given statement is wrong.