If both the roots of (2a−4)9x−(2a−3)3x+1=0 are non-negative, then
2 < a <
Putting 3x = y, we have
(2a - 4)y2 - (2a - 3)y + 1 = 0
This equation must have real solution
⇒ (2a−3)3 - 4 (2a - 4) ≥ 0
⇒ 4a2 - 20a + 25 ≥ 0
⇒ (2a−5)2≥0. This is true.
y = 1 satisfies the equation
Since 3x is positive and 3x≥3∘,y≥1
Product of the roots = 1 × y > 1 ×
⇒ 12a−4 > 1
⇒ 2a - 4 < 1 ⇒ a < 52
Sum of the roots =2a−32a−4 > 1
⇒ (2a−3)−(2a−4)2a−4 > 0
⇒ 12a−4 > 0
⇒ a > 2 ⇒ 2 < a < 52