Let f(x)=x2+2(k+1)x+9k−5 whose roots are α,β
Given: α,β<0
Required conditions:
(i) D≥0⇒4(k+1)2−4(9k−5)≥0⇒k2−7k+6≥0
⇒(k−1)(k−6)≥0⇒k∈(−∞,1]∪[6,∞) ⋯(1)
(ii) −ba<0⇒−2(k+1)<0⇒k>−1 ⋯(2)
(iii) ca>0⇒9k−5>0⇒k>59 ⋯(3)
From (1),(2) and (3),
k∈(59,1]∪[6,∞)
Hence, the minimum integral value of k is 1.