If both the roots of the quadratic equation x2−2kx+k2+k−5=0 are less then 5, then k lies in the Interval
x2−2kx+k2+k−5=0
Roots are less than 5, D ≥ 0
4k2−4(k2+k−5)≥0 ........(i)
⇒k≤5⇒f(5) > 0 ........(ii)
⇒k ϵ(−∞,4)∪(5,∞);−(2k2) < 5 ⇒ k < 5 .........(iii)
From (i), (ii) and (iii), k ϵ(−∞,4)