The correct option is A (−∞,1)
wehavex2−2px+ph2+p−5=0xisrealthen,D≥04p2−4.1.(p2+p−5)≥04p2−4p2−4p+20≥0−4p≥−20p≤5−−−−(1)f(3)>0(bothrootsarelessthan3)32−3p.3+p2+p−5>09−6p+p2+p−5>0p2−5p+4>0(p−1)(p−4)>0thenI∈(−∞,1)∪(4,∞)−−−−(2)alsoα+β<32p<3∴p<32−−−(3)byequn(1),(2),&(3)wegetp∈(−∞,1).Hence,optionAisthecorrectanswer.