The correct option is D 95
Let f(x)=x2+2(k+1)x+9k−5 whose roots are α,β
Given: α,β<0
Conditions:
(i) Δ≥0⇒4(k+1)2−4(9k−5)≥0⇒k2−7k+6≥0
⇒(k−1)(k−6)≥0⇒k∈(−∞,1]∪[6,∞) ⋯(1)
(ii) α+β<0⇒−2(k+1)<0⇒k>−1 ⋯(2)
(iii) α⋅β>0⇒9k−5>0⇒k>59 ⋯(3)
From (1),(2) and (3),
k∈[6,∞)∪{1}
Since, k is an integer less than 100,
k=1,6,7,…,98,99