The correct option is C (19,5−√52]∪[5+√52,∞)
x2+2(k+2)x+9k−1=0
The required conditions are,
(i) D≥0⇒4(k+2)2−4(9k−1)≥0⇒k2−5k+5≥0
Now,
k2−5k+5=0⇒k=5±√25−202⇒k=5±√52
k∈(−∞,5−√52]∪[5+√52,∞) ⋯(1)
(ii) −ba<0⇒−2(k+2)<0⇒k+2>0⇒k∈(−2,∞) ⋯(2)
(iii) ca>0⇒9k−1>0⇒k∈(19,∞) ⋯(3)
From equations (1),(2) and (3),
k∈(19,5−√52]∪[5+√52,∞)