The correct option is C 1bc2+1a2c+1cb2=0
Given : bx2+acx+b2c=0 and cx2+abx+b2c=0
Let the common root be α, so
bα2+acα+b2c=0cα2+abα+b2c=0⇒(b−c)α2+a(c−b)α=0⇒(b−c)α(α−a)=0⇒α=0,a
As a,b,c are non zero distinct real numbers, so
α=a
So,
ba2+a2c+b2c=0
Dividing by abc, we get
ac+ba+ab=0
On dividing by a2b2c2, we get
1bc2+1a2c+1cb2=0