wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If c0,c1,c2,......cn are the coefficients in the expansion of (1+x)n , when n is a positive integer, prove that
(1) c0c1+c2c3+.......+(1)rcr=(1)r|n1––––|r|nr1––––––––
(2) c02c1+3c24c3+.......+(1)n(n+1)cn=0
(3) c20c21+c22c23+.......+(1)nc2n=0, or (1)n2cn2,
according as n is odd or even.

Open in App
Solution

(1+x)n=1+nC1x+nC2x2+....nCnxn
(x1)n=1nC1x+nC2x2+....(1)nCnxn
(1+x)n1=1+n1C1x+n1C2x2+....n1Cnxn1
1.nC0nC1x+nC2x2+....(1)rnCrxr
= Co efficient of xr in(1x)n1
=n1Cr.(1)r
2.Sn=nr=0(1)r(r+1).nCr
=nr=0(1)r(r).nCr + nr=0(1)r.nCr
=nr=1(1)r(n).n1Cr1+0
=(1)nΣ(1)r1.n1Cr1+0 =0+0=0
3.(1+x)n=nC0+nC1x+...+nCnxn1
(x1)n=nC0xnnC1xn+...+(1)nnCn2
Multiplying 1 and 2:
S=C20C21+C22+....+(1)nC2n
=Co efficient of, xn in (x21)n
Tr+1=nCrx2(nr)(1)r
2n2r=n
r=n2
Therefore, For n = odd r is invalid S=0
For n = even S=(1)n/2nCn/2.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon