(1+x)n=1+nC1x+nC2x2+....nCnxn
⇒(x−1)n=1−nC1x+nC2x2+....(−1)nCnxn
⇒(1+x)n−1=1+n−1C1x+n−1C2x2+....n−1Cnxn−1
1.nC0−nC1x+nC2x2+....(−1)rnCrxr
= Co efficient of xr in(1−x)n−1
=n−1Cr.(−1)r
2.Sn=∑nr=0(−1)r(r+1).nCr
=∑nr=0(−1)r(r).nCr + ∑nr=0(−1)r.nCr
=∑nr=1(−1)r(n).n−1Cr−1+0 =(−1)nΣ(−1)r−1.n−1Cr−1+0 =0+0=0
3.(1+x)n=nC0+nC1x+...+nCnxn⟶1
⇒(x−1)n=nC0xn−nC1xn+...+(−1)nnCn⟶2
Multiplying 1 and 2:
S=C20−C21+C22+....+(−1)nC2n
=Co efficient of, xn in (x2−1)n
⇒Tr+1=nCrx2(n−r)(−1)r
⇒2n−2r=n
⇒r=n2
Therefore, For n = odd → r is invalid ⇒S=0
For n = even → S=(−1)n/2nCn/2.