Let Sn=c1−c22+c33−……+(−1)n−1cnn
We know the coefficients of the expansion of (1+x)n
∴Sn=n−n(n−1)2⋅2!+n(n−1)(n−2)3⋅3!−……to n terms
Similarly, Sn+1=(n+1)−(n+1)n2⋅2!−(n+1)n(n−1)3⋅3!+……to n+1 terms
Sn+1−Sn=1−n2!+n(n−1)3!−……to n+1 terms
Also we know that , (1+x)n+1=1+(n+1)x+(n+1)n2!x2+(n+1)n(n−1)3!x3+……to n+1 terms
For x=−1,0=1−(n+1)+(n+1)n2!−(n+1)n(n−1)3!+……to n+1 terms
∴1−n2!+n(n−1)3!−……to n+1 terms=1n+1
From above we can say that Sn+1−Sn=1n+1
⟹S2−S1=12, but since S1=1, thus S2=1+12
Similarly, S3=S2+13=1+12+13
Similarly, Sn=1+12+13+14+……+1n
Hence Proved