IfC0,C1,C2..,Cn denote the binomial coefficients in the expansion of
(1+x)n,thenC0+(C1/2)+(C2/3)+…..Cn/(n+1)=
[2n+1–1]/(n+1)
[2n–1]/(n+1)
[2n-1–1]/(n-1)
[2n+1–1]/(n+2)
Explanation for the correct options:
Finding the value of c0+c12+c23+....cnn+1=
1+xn=1+c1nx+c2nx2+cnnxn∫011+xndx=1+c1n2+c3n3+c4n2...+cnnn+1
Hence
∫01(1+x)ndx=1+xn+1n+101=2n+1-1n+1
Hence option(A) is correct.