wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If c0,c1,c2,....cn denote the coefficients in the expansion of (1+x)n, prove that c1c0+2c2c1+3c3c2+.....+ncncn1=n(n+1)2.

Open in App
Solution

S=nc1nc0+2nc2nc1+3nc3nc2+nncnncn1

S=nr=1{rncrncr1} ---- ( 1 )
Now,
ncrncr1=n!r!(nr)!n!(r1)!(nr+1)!

=(r1)!.(nr+1)!r!.(nr)!

=(r1)!.(nr+1).(nr)!r.(r1)!.(nr)!

=nr+1r
Hence ( 1 ) becomes,
S=nr=1{r(nr+1r)}

=nr=1{nr+1}

=nr=1n+nr=1(1)nr=1r

=nnr=1(1)+nr=1(1)nr=1r

=n(1+1+1....ntimes)+(1+1+1...ntimes)(1+2+3+...+n)

=n(n)+nn(n+1)2 [ Sum of n natural number =n(n+1)2 ]

=(n2+n)(n2+n2)

=n2+n2

nc1nc0+2nc2nc1+3nc3nc2+nncnncn1=n(n+1)2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Visualising the Terms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon