If c0,c1,c2,.......cn denote the coefficients in the expansion of (1+x)n, prove that c02+c12+c22+....cn2=|2n–––|n––|n––.
Open in App
Solution
⟹(1+x)n=C0+C1x+C2x+.......+Cn⋅xn⟶(I) (x+1)n=C0xn+C1xn−1+.......Cnx0⟶(II) Multiplying (I) and (II) C20+C21+C22+......+C2n−1+C2n = coefficient of xn in (1+x)2n =2nCn =(2n)!n!n!