If c0,c1,c2,.......cn denote the coefficients in the expansion of (1+x)n, prove that c0cr+c1cr+1+c2cr+2+....+cn−rcn=|2n–––|n−r––––––|n+r––––––.
Open in App
Solution
⟹(1+x)n=C0+C1x+C2x+.......+Cn⋅xn⟶(I) (x+1)n=C0xn+C1xn−1+.......Crxn−r+Cr+1xn−r+1+.....+Cnx0⟶(II) Multiplying (I) and (II), we get C0Cr+C1Cr+1+C2Cr+2+.....+Cn−rCr = coefficient of xn−r in (1+x)2n =2nCn−r =(2n)!(n−r)!(n+r)!