L.H.S=C0+C1)⋅(C1+C2)⋅(C2+C3)⋯(C19+C20)
Here Cr= 20Cr
We know,
nCr+ nCr−1= n+1Cr
⇒ C0+C1= 20+1C1= 21C1, C1+C2= 21C2,⋯, C19+C20= 21C20
Putting these values in L.H.S
L.H.S= 21C1⋅ 21C2⋅ 21C3⋯ 21C20
also n+1Cr=n+1r nCr−1
L.H.S=211⋅ 20C0⋅212⋅ 20C1⋅⋯2120 20C19
=C0⋅C1⋅C2⋯C19⋅212020!
=C0⋅C1⋅C2⋯C18⋅20⋅212020⋅19!
=C0⋅C1⋅C2⋯C18⋅212019!
⇒ a=21,b=19
∴ a+b=40