If c0,c1,c2⋯cn are binomial coefficients in (1+x)n, then the value of c1+c5+c9+c13+⋯ equals
A
2n−1+2n2sin(nπ4)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2n−1+2n2cos(nπ4)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
12(2n−1+2n2sinnπ4)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
12(2n−1−2n2sinnπ4)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C12(2n−1+2n2sinnπ4) c0,c1,c2⋯cn are binomial coefficients of (1+x)n i.e (1+x)n=c0+c1x+c2x2+c3x3+… put x=i ⇒(1+i)n=c0+c1i−c2−c3i+… ⇒2n2c is nπ4=c0+c1i−c2−c3i+… Comparing imaginary parts gives 2n2sinnπ4=c1−c3+c5+… ------(1) 2n−1=c1+c3+c5+… ------(2) (∵c0+c1+c2+⋯=2n) ∴ (1)+(2) gives c1+c5+c9+⋯=12(2n−1+2n2sinnπ4)